Publication List before 2013

Publication List before 2013

133. Exciton Localization and Optical Properties Improvement in Nanocrystal-Embedded ZnO Core-Shell Nanowires

Chen, R, Ye, QL, He, TC, Ta, VD, Ying, YJ, Tay, YY, T. Wu, Sun, HD, Nano Lett. 13, 734 (2013).

[photoluminescence, ZnO]


132.  Growing Crystalline Chalcogenidoarsenates in Surfactants: From Zero-Dimensional Cluster to Three-Dimensional Framework

W. W. Xiong, E. U. Athresh, Y. T. Ng, J. F. Ding, T. Wu, and Q. C. Zhang, JACS 135, 1256 (2013).

[chalcogenide synthesis, magnetism]

 

131.  Exchange Coupling and Coercivity Enhancement in Cuprate/Manganite Bilayers

J. F. Ding, Y. F. Tian, W. J. Wu, W. N. Lin, and T. Wu, Appl. Phys. Lett. 102, 032401 (2013).

[oxide interface, manganite, cuprate]


130. Anomalous Exchange Bias at Collinear/Noncollinear Spin Interface

Tian, YF , Ding, JF , Lin, WN , Chen, ZH, David, A , He, M, Hu, WJ , Chen, L, T. Wu, Sci. Rep. 3, 1094 (2013).

[oxide interface, manganite]


129. Ultraviolet Photovoltaic Effect in BiFeO3/Nb-SrTiO3 Heterostructure

Li, H , Jin, KX , Yang, SH , Wang, J , He, M , Luo, BC , Wang, JY , Chen, CL , T. Wu, J. Appl. Phys. 112, 083506 (2012).

[photovoltaic, multiferroic]


128. Realizing a SnO2-Based Ultraviolet Light-Emitting Diode via Breaking the Dipole Forbidden Rule

Y. F. Li, W. J. Yin, R. Deng, R. Chen, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S.-H. Wei, and T. Wu, NPG Asia Mater. 4, E30 (2012).

[photoluminescence, SnO2


127. Intrinsic domain-wall resistivity in half-metallic manganite thin films

S. R. Bakaul, W. Hu, T. Wu, and T. Kimura, Phys. Rev. B 86, 184404 (2012).

[ferromagnetic domains, manganite]


126.  Mechanism of Polarization Fatigue in BiFeO3

ACS Nano 6, 8997 (2012).

[ferroelectric switching, multiferroic ]

 

125. Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3

K. X. Jin, Y. F. Li, Z. L. Wang, H. Y. Peng, W. N. Lin, A. K. K. Kyaw, Y. L. Jin, K. J. Jin, X. W. Sun, C. Soci, and T. Wu*, AIP Advances 2, 042131 (2012).

[photovoltaic, STO]


124. Oxide nanowires for spintronics: materials and devices

Y. F. Tian, S. R. Bakaul, and T. Wu, Nanoscale 4, 1529 (2012) (Invited feature article)

[nanowire, magnetism]


123. Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires

J. Gao, O. Lebedev, S. Turner, Y. Li, Y. Lu, Y. P. Feng, P. Boullay, W. Prellier, G. van Tendeloo, and T. Wu, Nano Lett. 12, 275 (2012).

[nanowire, ITO, NiO]


122. Robust Room-Temperature Ferromagnetism with Giant Anisotropy in Nd-Doped ZnO Nanowire Arrays

D. D. Wang, Q. Chen, G. Z. Xing, J. B. Yi, S. B. Rahman, J. Ding, J. L. Wang, and T. Wu, Nano Lett. 12, 3994 (2012).

[magnetism, nanowire, ZnO]


121. Domain-related origin of magnetic relaxation in compressively strained manganite thin films

S. R. Bakaul, B. F. Miao, W. Lin, W. Hu, A. David, H. F. Ding, and T. Wu*, Appl. Phys. Lett. 101, 012408 (2012).

[magnetism, manganite]


120.  Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation

H. Y. Peng, Y. F. Li, W. N. Lin, X. Y. Gao, and T. Wu*, Sci. Rep. 2, 442 (2012).

[resistive switching memory, NiO]


119.Electric field driven phase transition and possible twinning quasi-tetragonal phase in compressively strained BiFeO3 thin films

C. L. Lu, J.-M. Liu, and T. Wu*, Front. Phys. 7, 424 (2012).

[ferroelectric switching, multiferroic ]


 118. Hole-mediated ferromagnetic enhancement and stability in Cu-doped ZnO alloy thin films

Y. F. Li, H. L. Pan, B. Yao, R. Deng, Y. Xu, J. C. Li, L. G. Zhang, H. F. Zhao, D. Z. Shen, and T. Wu, J. Phys. D – Appl. Phys. 45, 075002 (2012).

[magnetism, ZnO]


117. A general lithography-free method of microscale/nanoscale fabrication and patterning on Si and Ge surfaces

H. T. Wang, and T. Wu, Nanoscale ResearchLett. 7, 110(2012).

[nanopatterning, Si/Ge]


 116. Anisotropic magnetoresistance and weak spin-orbital coupling in doped ZnO thin films

Y. F. Tian, W. N. Lin, and T. Wu, Appl. Phys. Lett. 100, 052408 (2012).

[magnetotransport, ZnO]


 115. Engineering magnetic domains in manganite thin films by laser interference

S.R. Bakaul, W. Lin, and T. Wu*, Appl. Phys. Lett. 100, 012403 (2012).

[ferromagnetic domains, manganite]


114. Seeded growth of two-dimensional dentritic gold nanostructures

M. Pan, H. Sun, J. W. Lim, S. R. Bakaul, Y. Zeng, S. Xing, T. Wu, Q. Yan, and H. Chen, Chem. Comm. 48, 1440 (2012).

[nanostructure,Au]


113. In situ formation of new organic ligands to construct ten novel Pb(II)-based frameworks with ligand-to-metal charge transfer

Y. Liu, Y. Tian, F. X. Wei, M. S. C. Ping, C. Huang, F. Boey, C. Kloc, L. Chen, T. Wu, and Q. Zhang, Cryst. Eng Comm. 14, 75 (2012).

[synthesis, MOF]


112. Dependence of negative differential resistance on electronic phase separation in unpatterned manganite films

J. F. Ding, K. X. Jin, Z. Zhang, and T. Wu*, Appl. Phys. Lett. 100, 062402 (2012).

[magnetotransport, manganite]


111.  Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps

M. J. Li, G. C. Xing, L. F. N. A. Qune, G. Z. Xing, T. Wu, C. H. A. Huan, X. H. Zhang, and T. C. Sum, Phys. Chem. Chem. Phys. 14, 3075 (2012)

[photoluminescence, ZnO]


110. Effect of annealing on the temperature-dependent dielectric properties of LaAlO3 at terahertz frequencies

X. Q. Zou, M. He, D. Springer, D. W. Lee, S. K. Nair, S. A. Cheong, T. Wu, C. Panagopoulos, D. Talbayev, and E. E. M. Chia, AIP Advances 2, 012120 (2012).

[dielectric, LAO]


109. Dye-sensitized solar cell with a pair of carbon-based electrodes

A. K. K. Kyaw, H. Tantang, T. Wu, L. Ke, J. Wei, H. V. Demir, Q. C. Zhang, X. W.  Sun, J. Phys. D - Appl. Phys. 45, 165103 (2012).

[solar cell, carbon]


108. Role of donor-acceptor complexes and impurity band in stabilizing ferromagnetic order in Cu-doped SnO2 thin films

Y. F.  Li, R. Deng, Y. F. Tian, B. Yao, T. Wu, Appl. Phys. Lett. 100, 172402 (2012).

[magnetism, SnO2]


107. High sensitivity low field magnetically gated resistive switching in CoFe2O4/La0.66Sr0.34MnO3 heterostructure

V. Thakare, G. Z.  Xing, H. Y.  Peng, A. Rana, O. Game, P. A.  Kumar, A. Banpurkar, Y. Kolekar, K. Ghosh, T. Wu, D. D. Sarma, S. B.  Ogale, Appl. Phys.Lett. 100, 172412 (2012).

[resistive switching memory, oxide heterostructure]


106. Symmetrical negative differential resistance behavior of a resistive switching device

Y. M.  Du, H. Pan, S. J. Wang, T. Wu, Y. P. Feng, J. S. Pan, A. T. S. Wee, ACS Nano 6, 2517 (2012).

[resistive switching memory, TiO2]


105.Interface-dependent rectifying TbMnO3-based heterojunctions

Y. M. Cui, Y. F. Tian, W. Liu, Y. F. Li, R. M. Wang, and T. Wu, AIP Advances 1, 042129(2011).

[oxide interface, multiferroic ]

 

104.Thickness-dependent magnetism and spin-glass behaviors in compressively strained BiFeO3 thin films

C. J. Cheng, C. L. Lu, Z. H. Chen, L. You, L. Chen, J. L. Wang, and T. Wu, Appl. Phys. Lett. 98, 242502 (2011).

[magnetism, multiferroic ]

 

103.Uniaxial tensile strain and exciton-phonon coupling in bent ZnO nanowires

R. Chen, Q. L. Ye, T. C. He, T. Wu*, and H. D. Sun, Appl. Phys. Lett. 98, 241916 (2011).

[nanowire, ZnO]

 

102.Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO

Y. F. Tian, Y. F. Li, M. He, I. A. Putra, H. Y. Peng, B. Yao, S. A. Cheong, and T. Wu*, Appl. Phys. Lett. 98, 162503 (2011).

[magnetotransport, ZnO]

 

101.A new hydrazine-bridged thioantimonate Mn2Sb4S8(N2H4)2: Synthesis, structure, optical and magnetic properties

Y. Liu, Y. Tian, F. X. Wei, M. S. C. Ping, C. Huang, F. Boey, C. Kloc, L. Chen, T. Wu, and Q. Zhang , Inorg. Chem. Comm. 98, 241916 (2011).

[clcogenide synthesis, magnetism]

 

100. A SIMS study on Mg diffusion in Zn0.94Mg0.06O/ZnO heterostructures grown by metal organic chemical vapor deposition

L. L. Yang, Q. X. Zhao, G. Z. Xing, D. D. Wang, T. Wu, M. Willander, I. Ivanov, and J. H. Yang, Appl. Surf. Sci. 257, 8629 (2011).

[oxide interface, ZnO]

 

99.Room temperature ferromagnetism in partially hydtrogenated epitaxial graphene

L. F. Xie, X. Wang, J. Lu, Z. H. Ni, Z. Q. Luo, H. Y. Mao, R. Wang, Y. Y. Wang, H. Huang, D. C. Qi, R. Liu, T. Yu, Z. X. Shen, T. Wu, H. Y. Peng, B. Ozilmaz, K. Loh, A. T. S. Wee, Ariando, and W. Chen, Appl. Phys. Lett. 98, 193113 (2011).

[magnetism, graphene]

 

98. Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes 

T. Yang, B. Yao, T. T. Zhao, G. Z. Xing, H. Wang, H. L. Pan, R. Deng, Y. R. Sui, L. L. Gao, H. Z. Wang, T. Wu, and D. Z. Shen, J. Alloys Compd. 509, 5426 (2011).

[photoluminescence, ZnO]

 

97.UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires

J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu*, Nanotechnology 22, 195706 (2011). Also in News and Views of Nature Photonics 5, 332 (2010).

[photoluminescence, nanowire]

 

96.Charge transfer dynamics in Cu-doped ZnO nanowires

G. Z. Xing, G. C. Xing, M. J. Li, E. J. Sie, D. D. Wang, A. Sulistio, Q. L. Ye, C. H. A. Huan, T. Wu, and T. C. Sum, Appl. Phys. Lett. 98, 102105 (2011).

[photoluminescence, ZnO]

 

5.Concurrent novolatile resistance and capacitance switching in LaAlO3

S. X. Wu, H. Y. Peng, and T. Wu*, Appl. Phys. Lett. 98, 093503 (2011).

[resistive switching memory, LAO]

 

94.Top-illuminated dye-sensitize d solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode

K. K. Kyaw, X. W. Sun, J. L. Zhao, J. X. Wang, D. W. Zhao, X. F. Wei, X. W. Liu, H. V. Demir, and T. Wu, J. Phys. D - Appl. Phys. 44, 045102 (2011).

[solar cell, ZnO]

 

93.Buffer-layer-assistant ripening of Au catalyst nanoparticles and its effect on diameter control in vapor-liquid-solid growth of oxide nanowires

D. L. Guo, X. Huang, G. Z. Xing, Z. Zhang, G. P. Li, M. He, H. Zhang, H. Y. Chen, and T. Wu*,Phys. Rev. B 83, 045403(2011).

[nanowire, ZnO]

 

92.Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films

Z. H. Chen, Z. L. Luo, C. W. Huang, Y. J. Qi, P. Yang, L. You, C. S. Hu, T. Wu, J. L. Wang, C. Gao, T. Sritharan, and L. Chen, Adv. Func. Mater. 21, 133(2011).

[ferroelectricswitching, multiferroic]


 

91. Defects-mediatedenergy transfer in red-light-emitting Eu-doped ZnO nanowirearrays 

D. D.Wang, G. Z. Xing, M. Gao, Z. Zhang, G. C. Xing, L. L. Yang, T. C. Sum, J. H. Yang, and T. Wu*, J. Phys. Chem. C 115, 22729 (2011).

[photoluminescence, ZnO]

 

90. Evolution of magnetic bubble domains in manganite films 

S. R. Bakaul, W. Lin and T. Wu*, Appl. Phys. Lett. 99, 042503(2011).

[ferromagnetic domain, manganite]

 

89. Formation of complex nanostructures driven by polar surfaces

H. T. Wang and T. Wu*, J. Mater. Chem. 21, 15095 (2011). (Invited Highlight, also “Hot article”).

[nanostructure, silicide]

 

88. Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example

G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Yuan, and T. Wu*, AIP Adv. 1, 022152 (2011).

[magnetism, ZnO]

 

87. Nanoscale semiconductor-insulator-metal core/shell heterostructures: Facile synthesis and light emission

G. P. Li, R. Chen, D. L. Guo, L. M. Wong, S. J. Wang, H. D. Sun, and T. Wu*, Nanoscale 3, 3170 (2011).

[nanowire, ZnO]

 

86. Coexistence of ferroelectric triclinic phases with largest spontaneous polarization in highly strained BiFeO3films

Z. H. Chen, S. Prosandeev, P. Yang, Z. L. Luo, W. Ren, Y. Qi, C. W. Huang, L. You, C. Gao, I. A. Kornev, T. Wu, J. Wang, T. Sritharan, L. Ballaiche, and L. Chen, Phys. Rev. B, 84, 094116 (2011).

[ ferroelectric switching,multiferc]

 

85. Motion of micrometer sized spherical particles exposed to a transient radial flow: attraction, repulsion, and rotation

S. R. Gonzalez-Avila, X. Huang, P. A. Quinto-Su, T. Wu, and C.-D. Ohl, Phys. Rev. Lett. 107, 074503 (2011).

[nanoparticle, manipulation]


84.Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode

A. K. K. Kyaw, H. Tantang, Q. Zhang, T. Wu, L. Ke, C. Peh, Z. H. Huang, X. T. Zeng, H. V. Demir, and X. W. Sun, Appl. Phys. Lett. 99, 021107(2011).

[solar cell, carbon]

 

83. Enhanced electrical conductivity of individual conducting polymer nanobelts

L. Jiang, Y. Sun, H. Peng, L. -J. Li, T. Wu, J. Ma, F. Y. C. Boey, X. Chen, and L. Chi,Small 7, 1949 (2011).

[nanostructure, polymer]



82. Switching magnetoresistance in vertically interfaced Pr0.5Ca0.5MnO3 grown on ZnO nanowires

Appl. Phys.Lett. 99, 103102 (2011).

[magnetotransport, manganite, ZnO]



81. Toroidal micelles of polystyrene-block-poly(acrylic acid)

C. Liu, G. Chen, H. Sun, J. Xu, Y. Feng, Z. Zhang, T. Wu, and H. Chen, Small 7, 2721 (2011).

[nanostructure, polymer]

 

80.Buffer layer assisted epitaxial growth of perfectly aligned oxide nanorod arrays in solution

G. P. Li, L. Jiang, S. J. Wang, X. W. Sun, X. D. Chen, and T. Wu*, Crystal Growth & Design 11, 4885 (2011).

[nanowire, ZnO]

 

79.Ferromagnetic interaction between Cu ions in the bulk region of Cu-doped ZnO nanowires

Phys. Rev. B 84, 153203 (2011).

[magnetism, ZnO]

 

78.Giant in-plane anisotropy in manganite thin films driven by strain-engineered double exchange interaction and electronic phase separation

C. L. Lu, Y. Y. Wu, Z. C. Xia, S. L. Yuan, L. Chen, Z. M. Tian, J. M. Liu, and T. Wu*, Appl. Phys. Lett. 99, 122510 (2011).

[magnetotransport, manganite]

 

77.Polaronic transport and magnetism in Ag-doped ZnO

M. He, Y. Tian, D. Springer, I. Putra, G. Xing, E. Chia, S. A. Cheng, and T. Wu*, Appl. Phys. Lett. 99, 222511(2011).

[magnetism, ZnO]


76.Tuning magnetoresistance and exchange coupling in ZnO by doping transition metal

Y.F. Tian, Y. F. Li, and T. Wu*, Appl. Phys. Lett. 99, 222503(2011).

[magnetotransport, ZnO]


5.Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips

G. Sun, Y. Huang, L. Zheng, Z. Zhan, Y. Zhang, J. Peng, T. Wu, and P. Chen, Nanoscale 3, 4854 (2011). 

[nanostructure, carbon]

 

74.Evidence of cation vacancy induced room temperature ferromagnetism in Li-N codoped ZnO thin films

B. Y. Zhang, Y. F. Li, A. M. Liu, Z. Z. Zhang, B. H. Li, G. Z. Xing, T. Wu, X. B. Qin, D. X. Zhao, C. X. Shan, and D. Z. Shen, Appl. Phys. Lett. 99, 82503(2011).

[magnetism, ZnO]


73.Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles

P. A. Qinto-Su, X. H. Huang, R. Gonzalez, T. Wu, and C. D. Ohl, Phys. Rev. Lett. 104, 014501 (2010)

[nanostructure, manipulation]

 

72.Ferromagnetism in diluted magnetic semiconductors through defect engineering: Li-doped ZnO

J. B. Yi, C. C. Lim, Y. P. Feng, J. Ding, L. H. Van, G. Z. Xing, S. L. Huang, K. S. Yang, T. Wu, L. Wang, H. M. Fan, H. T. Zhang, X. Y. Gao, T. Liu,  and A. T. S. Wee, Phys. Rev. Lett. 104, 137201 (2010).

[magnetism, ZnO]

 

71.Tunable magnetic interaction at the atomic scale in oxide heterostructures

J. W.Seo, W. Prellier, P. Padhan, P. Poullay, J. -Y. Kim, H. Lee, C. D. Batista, I. Martin, E. M. Chia, T. Wu, B. G. Cho, and C. Panagopoulos, Phys. Rev. Lett. 105, 167206 (2010). Highlighted by Nature Materials 9, 958 (2010).

[oxide interface, manganite]

 

70.Controlled manipulation and in-situ mechanical measurement of single Co nanowire with a laser-induced cavitation bubble

X. H. Huang, P. A. Quinto-Su, S. R. Gonzalez-Avila, T. Wu*, and C. D. Ohl*,Nano Lett.10, 3846(2010).

[nanostructure,manipulation]

 

69.CrSi2 hexagonal nanowebs

H. T. Wang, J. C. Wu, Y. Q. Shen, G. P. Li, Z. Zhang, G. Z. Xing, D. L. Guo, D. D. Wang, Z. L. Dong, and T. Wu*, J. Am. Chem. Soc. 132, 15875 (2010). Highlighted by Nature Chemistry (January 2011 issue 1, page 10).

[nanostructure, silicide]

 

68.Uniaxial magnetic anisotropy induced by multiferroic BiFeO3 with regular ferroelectric domains

L. You, C. L. Lu, P. Yang, G. C. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, and J . L. Wang, Adv.  Mater. 22, 4964(2011).

[oxide heterostructure,multiferroic]

  

 67.Self-Assembled In-Plane Growth of Mg2SiO4 Nanowires on Si Substrates Catalyzed by Au Nanoparticles

Z. Zhang, L. M. Wong, H.X. Wang, Z. P. Wei, W. Zhou, S. J. Wang, and T. Wu*,Adv. Func. Mater. 20, 2511(2010).

[nanowire, in-plane growth]

 

66. Morphology-controlled formation of micro/nanoscale pits on silicon substrates induced by anisotropic diffusion and silicide sublimation

.T. Wang, Z. Zhang, L. M. Wong, S. J. Wang, Z. P. Wei, G. P. Li, G. Z. Xing, D. L. Guo, D. D. Wang and T. Wu*, ACS Nano 4, 2901(2010).

[nanostructure, silicide]

 

65. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints

ACS Nano 4, 3087(2010).

[SERS, nanostructure]


64. A template-free metal-etching-oxidation method to synthesize aligned nanowire arrays: NiO as an example

Z. P. Wei, M. Arredondo, H. Y. Peng, Z. Zhang, D. L. Guo, G. Z. Xing, L. M. Wong, S. J. Wang, N. Valanoor, and T. Wu*, ACS Nano 4, 4785(2010).

[nanowire, NiO]

 

63. Ultraviolet light emission and excitonic fine structure in ultrathin single-crystalline indium oxide nanowires

Z. P. Wei, D. L. Guo, B. Liu, R. Chen, L. M. Wong, W. F. Yang, S. J. Wang, H. D. Sun*, and T. Wu*, Appl. Phys. Lett. 96, 031902 (2010).

[photoluminescence, In2O3]

 

62. Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering

K. W. Liu, R. Chen, G. Z. Xing, T. Wu, and H. D. Sun, Appl. Phys. Lett. 96, 023111(2010).

[photoluminescence, ZnO]

 

61.Correlated d0 magnetism and photoluminescence in undoped ZnO nanowires

G. Z. Xing, D. D. Wang, J. B. Yi, L. L. Yang, M. Gao, M. He, J. H. Yang, Q. X. Zhao, J. Ding, T. C. Sum, and T. Wu*, Appl. Phys. Lett. 96, 112511 (2010).

[photoluminescence, magnetism, ZnO]

 

60. Electrode dependence of resistive switching in Mn-doped ZnO: filamentary vs. interfacial mechanisms

H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu*, Appl. Phys. Lett. 96, 192113(2010).

[resistive switching memory, ZnO]

 

59. Enhanced low field magnetoresistance in nanocrystalline La0.7Sr0.3MnO3 synthesized on MgO nanowires

Z. Zhang, R. Ramadurai, B. T. Xie, L. You, L. M. Wong, S. J. Wang, J. L. Wang, W. Prellier, Y. G. Zhao, and T. Wu*, Appl. Phys. Lett. 96, 222501(2010).

[magnetotransport, manganite, nanowire]


 58. Tuning ferromagnetism in MgZnO thin films by band gap and defect engineering

Y. F. Li, R. Deng, G. Z. Xing, B. Yao and T. Wu*, Appl. Phys. Lett. 97, 102506(2010).

[ magnetism, ZnO]

 

57. Nanoscale resistive switching and filamentary conduction in NiO thin films

J. Y. Ye, Y. Q. Li, J. Gao, H. Y. Peng, S. X. Wu and T. Wu*, Appl. Phys. Lett. 97, 132108(2010).

[resistive switching memory,NiO]

   

56. Rayleigh-instability-driven simultaneous morphological and compositional transformation from Co nanowires to CoO octohedra chains

X. H. Huang, Z. Y. Zhan, X. Wang, Z. Zhang, G. Z. Xing, D. L. Guo, D. P. Leusunk, L. X. Zheng, and T. Wu*, Appl. Phys. Lett. 97, 203112 (2010).

[nanostructure, nanopaterning]

 

55. Low symmetry monoclinic Mc phase in epitaxial BiFeO3 thin films on LaSrAlO3 substrates

Z. H. Chen,Z. L. Luo, Y. J. Qi, P. Yang, S. X. Wu, C. W. Huang, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, Appl. Phys. Lett. 97, 242903 (2010).

[multiferroic, BFO ]


 

54. Superconducting gap induced barrier enhancement in a BiFeO3-based heterostructure

C. L. Lu, Y. Wang, L. You, X. Zhou, H. Y. Peng, G. Z. Xing, E. E. M. Chia, C. Panagopoulos, L. Chen, J. M. Liu, J. L. Wang*, and T. Wu*, Appl. Phys. Lett. 97, 252905(2010). 

[oxide heterostructure, multiferroic, cuprate]

 

53. Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications

H.Li, J. Zhang, X. X. Zhou, G. Lu, Z. Y. Yin, G. P. Li, T. Wu, F. Boey, S. S. Venkatraman, and H. Zhang, Langmuir 26, 5603

(2010).

[nanostructure, nanopaterning]



 52. Sb2Te3 nanoparticles with enhanced Seebeck coefficient and low thermal conductivity

J. Chen, T. Sun, D. H. Sim, H. Y. Peng, H. T. Wang, S. F. Fan. H. H. Hng, J. Ma, F. Y. C. Boey, S. Li, M. K. Samani, G. C. K. Chen, X. D. Chen, T. Wu and Q. Y. Yan, Chem. Mater. 22, 3086(2010).

[thermoelectric, nanoparticle]

 

51.Scalable toutes to Janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles

T. Chen, G. Chen, S. X. Xing, T. Wu, and H. Y. Chen, Chem. Mater. 22, 3826(2010).

[nanostructure, nanocomposite]

 

50. Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission properties

G.Z. Xing, Z. Zhang, D. Wang, X. S. Fang, X. Huang, J. Guo, L. Liao, Z. Zheng, H. R. Xu, T. Yu, Z. X.Shen, C. H. A. Huan, T. C. Sum, H. Zhang, and T. Wu*,  Nanotechnology 21, 255701(2010).

[nanostructure,ZnO]

 

 

49. Synthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires

C. Pang, B. Yan, L. Liao, B. Liu, Z. Zheng, T. Wu, H. D. Sun, and T. Yu, Nanotechnology 21, 465706 (2010).

[field effect device, nanowire]


 

48. Electroluminescence from n-In2O3:Sn randomly assembled nanorods/p-SiC heterojunction

H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao and T. Wu, Optics Express 18, 15585(2010).

[Photoluminescence,ITO]

 

47. Random lasing action of randomly assembled ZnO nanowires with MgO coating

H. Y. Yang, S. F. Yu, G. P. Li, and T. Wu, Optics Express 18, 13647(2010).

[Photoluminescence, ZnO]


 

46.Spontaneous and stimulated emission of ZnO/Zn0.85Mg0.15O assymmetric double quantum wells

S. C. Su, Y. M. Lu, G. Z. Xing, and T. Wu, Superlattices and Microstructures 48, 485 (2010).

[Photoluminescence, oxide heterostructure, ZnO]

 

45. Investigation of structured green band emission and electron-phonon interactions in vertically aligned ZnO nanowires

R. Chen, Y. Tay, J. Ye, Y. Zhao, G. Z. Xing, T. Wu, and H. D. Sun, J. Phys. Chem. C 14, 17889(2010).

[Photoluminescence, nanowire,  ZnO]

 

44 .Hydrazine-hydrothremal method to synthesize three-dimensional chalcogenide framework for photocatalytic hydrogen generation

Y. Liu, P. D. Kanhere, C. L. Wong, Y. F. Tian, Y. H. Feng, F. Boey, T. Wu, H. Y. Chen, T. J. White, Z. Chen, and Q. C. Zhang, J. Solid State Chem. 183, 2644(2010).

[chalcogenide synthesis, magnetism]


43. Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3 nanostructures

G. Z. Xing, J. B. Yi, D. D. Wang, L. Liao, T. Yu, Z. X. Shen, C. H. A. Huan, T. C. Sum, J. Ding, and T. Wu*, Phys. Rev. B 79, 174406 (2009).

[magnetism, SnO2]

 

42. Nonvolatile resistance switching in spinel ZnMn2O4 and ilmenite ZnMnO3

H. Y. Peng and T. Wu*, Appl. Phys. Lett. 95, 152106 (2009).

[resistive switching memory, oxide]

 

41. Ultraviolet coherent random lasing in SnO2 nanowires

H. Y. Yang, S. F. Yu, S. P. Lau, S. H. Tsang, G. Z. Xing, T. Wu, Appl. Phys. Lett. 94, 241121 (2009).

[photoluminescence, nanowires, SnO2]

 

40. Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires

R. Chen, G. Z. Xing, J. Gao, Z. Zhang, T. Wu and H. D. Sun, Appl. Phys. Lett. 95, 061908 (2009).

[photoluminescence, nanowires, SnO2]

 

39. High temperature excitonic lasing characteristics of randomly assembled SnO2 nanowires

H. Y.Yang, S. F. Yu, S. P. Lau, J. Gao, T. Wu, Appl. Phys. Lett. 95, 131106 (2009).

[photoluminescence, nanowires, SnO2]

 

38. Morphology-controlled synthesis and comparative study of physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts

Z. Zhang, J. Gao, L. Liao, Z. Zheng, G. Z. Xing, H. Y. Peng, T. Yu, Z. X. Shen, C. H. A. Huan, S. J. Wang, and T. Wu*, Nanotechnology 20, 135605(2009).

[nanostructure, SnO2]

 

37. Multifunctional CuO nanowire devices: p-type field effect transistors and selective CO gas sensors

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, X. Z. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, Nanotechnology 20, 085203(2009).

[field effect device, nanowires, CuO]

 

36. Chlorine-assisted size-controlled synthesis and tunable photoluminescence in Cr-doped silica nanospheres

D. Wang, G. Xing, H. Y. Peng, and T. Wu*, J. Phys. Chem. C 113, 7065 (2009).

[photoluminescence, nanostrcture]

 

35. Chemical sensor based on semiconducting mesosporous carbon nanofibers network

L. Liao, M. Zheng, Z. Zhang, B. Yan, X. Chang, G. Ji, Z. Shen, T. Wu, J. Cao, J. Zhang, H. Gong, J. Cao, and T. Yu, Carbon 47, 1841 (2009).

[nanocomposite, carbon]

 

34. P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, Z. X. Shen, T. Wu, L. Wang, J. T. L. Tong, C. M. Li, W. Huang, and T. Yu, Appl. Phys. Lett. 94, 13106(2009).

[photoresponse, nanowire, magnetism, Cu2O]

 

33. ZnO nanowire transistor: a nonvolatile ferroelectric memory.

L. Liao, B. Yan, Z. Zhang, L. L. Chen, B. S. Li, G. Z. Xing, Z. X. Shen, T. Wu, X. W. Sun, J. Wang, and T. Yu, ACS NANO 3, 700 (2009).

[field effect device, nanowire, ferroelectric, ZnO]

 

32. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced raman scattering.

Huajun Feng, Yanmei Yang, Yumeng You, Gongping Li, Jun Guo, Ting Yu, Zexiang Shen, Tom Wu, and Bengang Xing, Chem Comm. 15, 1984(2009).

[SERS, nanowire]

 

31. Fabrication and properties of B–N codoped p-type ZnO thin films

Y. R. Sui, B. Yao, Z. Hua, G. Z. Xing, X. M. Huang, T. Yang, L. L. Gao, T. T. Zhao, H. L. Pan, H. Zhu, W. W. Liu, T. Wu, J. Phys. D: Appl. Phys. 42, 065101(2009)

[photoluminescence, ZnO]


30. Comparative Study of Room-Temperature Ferromagnetism in Cu-Doped ZnO Nanowires Enhanced by Structural Inhomogeneity

G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, T.. C. Sum, C. H. A. Huan, and T. Wu*, Adv. Mater. 20, 3521(2008)

[nanowire, ZnO, magnetism]

 

29.Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu3Si triangles, squares, and wires

Z. Zhang, L. M. Wong, H. G. Ong, X. J. Wang, J. L. Wang, S. J. Wang, H. Y. Chen, and T. Wu*, Nano Lett. 8, 3205(2008).

[nanostructure, silicide]

 

28. Preparation of polymer-encapsulated gold-nanoparticle dimers and their application as catalysts to guide the growth of dimeric ZnO-nanowires

Xinjiao Wang, Gongping Li, Tao Chen, Miaoxin Yang, Zhou Zhang, Tom Wu*, Hongyu Chen, NanoLett. 8, 2643 (2008).

[nanowire, nanoparticle, ZnO,Au]

 

27. Tunable wettability in surface-modified ZnO-based hierarchical nanostructures

Gongping Li, Tao Chen, Bin Yan, Yun Ma, Zhou Zhang, Ting Yu, Zexing Shen, Hongyu Chen, T. Wu*, Appl. Phys. Lett. 92, 173104(2008).

[nanowire, wetting, ZnO]

 

26. Manganite thin film/ZnO nanowires (nanosheets) p-n junctions

Z. Zhang, Y. H. Sun, Y. G. Zhao, G. P. Li, and T. Wu*, Appl. Phys. Lett. 92, 103113(2008).

[nanowire, oxide heterostructure, manganite, ZnO]

 

25. Tailoring the photoluminescence in ZnO nanowires using Au nanoparticles.

.Chen, G. Z. Xing, Z. Zhang, H. Y. Chen, T. Wu*, Nanotechnology 19, 435711(2008).

[photoluminescence, nanowire, nanoparticle, ZnO, Au]

 

24.Cu-doped ZnO nanoneedles and nanonails: morphological evolution and physical properties

Z.Zhang, J. B. Yi, J. Ding, L. M. Wong, H. L. Seng, S. J. Wang,  J. G. Tao, , G. P. Li, G. Z. Xing, T. C. Sum, C. H. A. Huan, and T. Wu*, J. Phys. Chem. C 112, 9579(2008).

[nanostrcture, ZnO]

 

23.DC leakage behavior and conduction mechanism in (BiFeO3)m(SrTiO3)m superlattices

R. Ranjith, W. Prellier*, J. W. Cheah, J. L. Wang, and T. Wu, Appl. Phys. Lett. 92, 232905(2008). 

[oxide heterostructure, multiferroic, titanite]


22.Controlling the growth mechanism of ZnO nanowires by selecting catalysts

Z.Zhang, S. J. Wang, T. Yu, T. Wu*, J. Phys. Chem. C 111, 17500 (2007).

[nanowire, ZnO]

 

21.Creation and annihilation of conducting filaments in mesoscopic manganite structures

T. Wu, J. F. Mitchell, Phys. Rev. B 74, 214423 (2006). 

[magnetotransport, manganite]

 

20.Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal hetereostructures

T.Wu, M. Zurbuchen, S. Saha, R. –V. Wang, S. K. Streiffer, and J. F. Mitchell, Phys. Rev. B 73, 134416 (2006). 

[oxide heterostructure,multiferroic, manganite]

 

19.Spontaneous sharp metamagnetic transition in manganite films: influences of post-deposition annealing and measurement protocol

T. Wu*, J. F. Mitchell,  J. Mag. Mag. Mat. 292, 25 (2005).

[magnetism, manganite]

 

18  .Enhanced magnetoresistance in strain-free manganite network

T. Wu*, J. F. Mitchell, Appl. Phys. Lett. 86, 062502(2005).

[magnetotransport, manganite]

 

17. Negative differential resistance in mesoscopic manganite structures

T. Wu, J.F.Mitchell, Appl. Phys. Lett. 86, 252505(2005). 

[magnetotransport, manganite]

 

16. Multiferroic composite ferroelectric-ferromagnetic films

M.Zurbuchen, T. Wu, S. Saha, R. –V. Wang, S. K. Streiffer, and J. F. Mitchell, Appl. Phys. Lett. 87, 232908

[oxide heterostructure, multiferroic, manganite]

 

15. Magnetization steps in manganite films: time delay of the metamagnetic transition

T. Wu*, J. F. Mitchell, Phys. Rev. B 69, R100405 (2004).

[magnetism, manganite]

 

14. Substrate induced strain effects in epitaxial La0.67-xPrxCa0.33MnO3 thin films

T. Wu*, S. B. Ogale, S. Shinde, A. Biswas, T. Polletto, R. L. Greene, T. Venkatesan, and A. J. Millis, J. Appl. Phys. 93, 5507 (2003).

[magnetotransport, manganite]

 

13. Electroresistance and electronic phase separation in mixed-valent manganites

T. Wu*, S. B. Ogale*, J. E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R. L. Greene, R. Ramesh, T. Venkatesan, and A. J. Millis, Phys. Rev. Lett. 86, 5998 (2001).

[ field effect device, manganite]



12.Novel approaches to field modulation of electronic and magnetic properties of oxides

T. Venkatesan, D. C. Kundaliya, T. Wu, S. B. Ogale, Phil. Mag. Lett. 87, 279 (2007).

[field effect device, manganite]



11.Are strain-induced effects truly straininduced? A comprehensive study of strained LCMO thin films

J. Appl. Phys. 97, 10C102(20).

[magnetism, manganite]

 

10.Electrical transport and magnetic properties of La0.5Ca0.5MnO3-y with varying oxygen content

Y. G. Zhao, W. Cai, J. Zhao, X. P. Zhang, B. S. Cao, M. H. Zhu, L. W. Zhang, S. B. Ogale, T. Wu, T. Venkatesan, L. Lu, T. K. Mandal, and J. Gopalakrishnan, Phys. Rev. B 65, 144406 (2002).

[magnetism, manganite]


 9.Insulator-metal transition and magnetoresistance of La0.5Ca0.5MnOy induced by tuning the oxygen content

Y. G. Zhao, et al.  J. Appl. Phys.  92, 5391(2002).

[magnetotransport, manganite]

 

8.Interface characterization of all-Perovskite oxide field effect heterostructures

B. Nagaraj, T. Wu, S. B. Ogale, T. Venkatesan, and R. Ramesh, J. Electroceramics 8, 233 (2002).

[field effect device, oxide interface]

 

7. Optical Cooper pair breaking spectroscopy of YBa2Cu2.8Zn0.2O7 thin films

Y. G. Zhao, T. Wu, et al., Supercon. Sci. Tech. 15, 468 (2002).

[optoelectronic, cuprate]

 

6.Spin polarized transport across a La0.7Sr0.3MnO3/YBa2Cu3O7-x interface: role of Andreev bound states

Z. Chen, A. Biswas, I. Zutic, T. Wu, S. B. Ogale, R. L. Greene, and T. Venkatesan, Phys. Rev. B 63, 212508 (2001).

[oxide interface, manganite, cuprate]

 

5.Optical Cooper pair breaking spectroscopy of cuprate superconductors

Y.G. Zhao, E. Li, T. Wu, S. B. Ogale, R. P. Sharma, T. Venkatesan, J. J. Li, W. L. Cao, C. H. Lee, H. Sato, and M. Naito, Phys. Rev. B 63, 132507 (2001).

[optoelectronic, cuprate]

 

4.Electrical transport and magnetic properties of a possible electron-doped layered manganese oxide

Y. G.Zhao, Y. H. Li, S. B.Ogale, M. Rajeswari, V. Smolyaninova, T. Wu, A. Biswas, L. Salamanca-Riba, R. L. Greene, R. Ramesh, T. Venkatesan, and J. H. Scott, Phys. Rev. B 61, 4141 (2000).

[manganite, magnetism]

 

3.Transport and magnetic properties of La0.8Ce0.2MnO3 thin films grown by pulsed laser deposition

Y. G. Zhao, R. C. Srivastava, P. Fournier, V. Smolyaninova, M. Rajeswari, T. Wu, et al., J. Mag. Mag. Mat. 220, 161 (2000).

[magnetotransport, manganite, magnetism]

 

2.Spin-polarized quasi-particle injection into YBCO

Jin, Z. Chen, T. Wu, S. P. Pai, Z. Dong, S. B. Ogale, R. Ramesh, T. Venkatesan, M. Johnson, E. Finley, F. A. Hegmann, and M. R. Freeman., IEEE Appl. Supercon. 9, 3640 (1999).]

[oxide heterostructure, manganite, cuprate]


1.Superconducting cuprates and magnetoresistive manganites: similarities and contrasts

T. Venkatesan et al., Mat. Sci. Eng. B 63, 36(1999).

[manganite, cuprate]